这里存放了一些自动控制原理相关的知识。
S-Z变换表 (Table of s- and z-transforms)
$f(t)$ | $F(s)$ | $f(kT)$ or $f(k)$ | $F(z)$ | name | |
---|---|---|---|---|---|
1 | $\delta (t)$ | $1$ | $\delta(k)$ | 1 | 单位冲激 (unit impulse) |
2 | $\delta (t-t_d)$ | $e^{-t_ds}$ | $\delta (k-n)$ | $z^{-n}$ | 时延单位冲激(delayed unit impluse) |
3 | $u(t) = 1$ | $1 \over s$ | $u(k) = 1$ | ${z} \over {z-1}$ | 单位阶跃(unit step) |
4 | $t$ | $1 \over {s^2}$ | $kT$ | ${zT} \over {(z-1)^2}$ | 斜坡函数(ramp) |
5 | $t^2$ | $2\over{s^3}$ | $(kT)^2$ | ${z(z+1)T^2} \over {(z-1)^3}$ | 抛物线函数(parabola) |
6 | $a^k$ | $z \over {z-a}$ | 几何序列(geometric sequence) | ||
7 | $e^{-at}$ | ${1} \over {s+a}$ | $e^{-akT}$ | ${z} \over {z-e^{-aT}}$ | 自然指数(natural exponential) |
8 | $1-e^{-at}$ | ${1} \over {s(s+a)}$ | $1-e^{-akT}$ | ${(1-e^{-aT})z} \over {(z-1)(z-e^{-aT})}$ | 单位阶跃指数(unit step exponential) |
9 | $te^{-at}$ | ${1} \over {(s+a)^2}$ | $kTe^{-akT}$ | ${Tze^{-aT}} \over {(z-e{-aT})2}$ | |
10 | $ka^{k-1}$ | ${z} \over {(z-a)^2}$ | |||
11 | $ak-bk$ | ${(a-b)z} \over {(z-a)(z-b)}$ | |||
12 | $sin \omega t$ | ${\omega} \over {s2+\omega2}$ | $sin \omega kT$ | ${z sin \omega T}\over{ z^2 - 2zcos\omega T + 1}$ | sine |
13 | $cos \omega t$ | ${s} \over {s2+\omega2}$ | $cos \omega kT$ | ${z(z - cos \omega T)}\over{ z^2 - 2zcos\omega T + 1}$ | cosine |
14 | $e^{-at}sin \omega t$ | ${s} \over {(s+a)2+\omega2}$ | $e^{-akT}sin \omega kT$ | ${ze^{-aT} sin \omega T}\over{ z^2 - 2ze^{-aT}cos\omega T + e^{-2aT}}$ | 自然欠阻尼(natural underdamped) |
15 | ${df}\over{dt}$ | $sF(s) - f(0)$ | (空置) | (空置) | 一阶导($1^{st}$ derivative) |
16 | ${d2f}\over{dt2}$ | $s^2F(s) - sf(0) - \frac{df(0)}{dt}$ | (空置) | (空置) | 二阶导($2^{nd}$ derivative) |
17 | $f(k-n)$ | $z^{-n}F(z)$ | 左移n时位(backward shift of n) | ||
18 | $f(t-t_d)$ | $e^{t_ds}F(s)$ | 时延(time delay) | ||
19 | (空置) | (空置) | $f(k+1)$ | $zF(s) - f(0)$ | 右移1时位(forward shift of one) |
20 | (空置) | (空置) | $f(k+2)$ | $sF(s) - f(0)$ | 右移2时位(forward shift of two) |
21 | $f(0)$ | $\lim\limits_{s\rightarrow\infin}sF(s)$ | $f(0)$ | $\lim\limits_{z\rightarrow\infin}F(z)$ | 初值(initial value) |
22 | $f(\infin)$ | $\lim\limits_{s\rightarrow 0}sF(s)$ | $f(\infin)$ | $\lim\limits_{z\rightarrow 1}(z-1)F(z)$ | 终值(final value) |
...大约 3 分钟